Gaussian process regression for geometry optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Gait Optimization with Gaussian Process Regression

Gait optimization is a basic yet challenging problem for both quadrupedal and bipedal robots. Although techniques for automating the process exist, most involve local function optimization procedures that suffer from three key drawbacks. Local optimization techniques are naturally plagued by local optima, make no use of the expensive gait evaluations once a local step is taken, and do not expli...

متن کامل

Efficient Optimization for Sparse Gaussian Process Regression: Supplementary Material

K is the rank n full covariance matrix to be factorized, and K does not need to precomputed (taking up O(n) storage), but just need to return its diagonal and specific column when queried (a function handle for example). If σ is supplied, the algorithm below operates with an additional twist allowing the augmentation trick introduced in Sec. 3 of the paper, in which case the matrix L in the alg...

متن کامل

Bagging for Gaussian process regression

This paper proposes the application of bagging to obtain more robust and accurate predictions using Gaussian process regression models. The training data is re-sampled using the bootstrap method to form several training sets, from which multiple Gaussian process models are developed and combined through weighting to provide predictions. A number of weighting methods for model combination are di...

متن کامل

Hierarchical Gaussian Process Regression

We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...

متن کامل

Latent Gaussian Process Regression

We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary processes using stationary GP priors. The approach is built on extending the input space of a regression problem with a latent variable that is used to modulate the covariance function over the input space. We show how our approach can be used to model non-stationary process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2018

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.5017103